If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(16x)^2+(9x)^2-(147^2)=0
We add all the numbers together, and all the variables
25x^2-21609=0
a = 25; b = 0; c = -21609;
Δ = b2-4ac
Δ = 02-4·25·(-21609)
Δ = 2160900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2160900}=1470$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1470}{2*25}=\frac{-1470}{50} =-29+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1470}{2*25}=\frac{1470}{50} =29+2/5 $
| 4x-7=4x-10 | | X-6/4=x/3 | | ((1/7.535533906+2^(1/2))+22^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=1 | | 14/34=x/244 | | 6x-(2x-10)=24 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=1 | | 5y(y-2)=35 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=4 | | C(100)=0.65x+4 | | ((1/7.535533906+2^(1/2))+2*2^(1/2)*x)/((1/7.535533906+2^(1/2))-x)=8 | | 2/7j-1/7=1/14 | | 52w=700 | | ((2+2^(1/2))+2^(1/2)*x)/((2+2^(1/2))-x)=0 | | ((2+2^(1/2))+2^(1/2)*x)/((2+2^(1/2))-x)=1 | | C(50)=0.65x+4 | | ((2+2^(1/2))+2^(1/2)x)/((2+2^(1/2))-x)=1 | | ((2+2^(1/2))+2^(1/2)x)/((2+2^(1/2))-x)=2 | | (2+2^(1/2)+2^(1/2)x)/(2+2^(1/2)-x)=2 | | 50=3/4k-18 | | t2=16 | | 50=(3/4)x-18 | | -7n-3(8n-8)=148 | | -3x2-9x+12=0 | | (3+x)/(3-x)=1 | | (3+x)/(3-x)=7/5 | | (2+2*x)/(2-x)=8 | | (2+2*x)/(2-x)=4 | | 100x=25x | | 1/2x2-9x+27=0 | | -3x+8=4x+8 | | (2+2*x)/(2-x)=16 | | (1+2/3+x)/(1+2/3-x)=2 |